2849 Jan 2006

Abbreviations,	1	= alternative and acceptable answers for the same marking point
annotations and	;	= separates marking points
conventions used	NOT	= answers which are not worthy of credit
in the Mark	()	= words which are not essential to gain credit
Scheme		= (underlining) key words which <u>must</u> be used to gain credit
	ecf	= error carried forward
	AW	= alternative wording
	ora	= or reverse argument

		Marks
1 (a)	Improve properties / demand greater than nature can supply / reduce cost (1).	1
1 (b)	H O H O H O H O H O H O H O H O	2
1 (c) (i)	1,4-diaminobutane diaminobutane allow butyl/butan(e)diamine (1); 1,4 (1). ecf. 1,6-diaminohexane for 1 mark	2
1 (c) (ii)	Any two from the following four points: lower T_a/T_m / strength/ rigidity ora (2). NOT b.p. nor density.	2
1 (d) (i)	3×10^4 / 198 (1); 150–152 (1) ecf for M_r .	2
1 (d) (ii)	(Secondary) amide (1) NOT peptide.	1
1 (d) (iii)	There will be greater number of hydrogen bonds (1); between chains (1); greater energy needed (to enable chains to move/flow) (1).	3
1 (e) (i)	⁺ H ₃ N $\overset{\text{NH}_3^+}{may not be skeletal (1);}$ HOC $(CH_2)_4$ $\overset{\text{O}}{}$ C $\overset{\text{O}}{}$	2
1 (e) (ii)	H = H = H = H = H = H = H = H = H = H =	2
	Any one of the three atom arrangements above (1); Correct partial charges (1).	1 17

2849 Jan 2006

Question	Expected answers	Marks
2 (a) (i)	+5 (1) accept 5+.	1
2 (a) (ii)	hydrogen electrode (1); detailed drawing not required but should have H ₂ gas and H ⁺ (aq). a half-cell made from Pt (or C) dipping into a solution VO ₂ ⁺ and VO ²⁺ ions (1); conditions given as 1 mol dm ⁻³ /1M concentrations, 1 atmosphere pressure and 298 K (1); salt bridge dipping in solutions(1); voltmeter correctly connected (1).	5
2 (b) (i)	0.74 V (1).	1
2 (b) (ii)	B N^{2^+} / V^{3^+} (may give more detail of half-cells) because it has the more negative/less positive electrode potential AW in terms of reducing agent/oxidizing agent or electron transfer (1).	1
2 (c) (i)	$V^{3+} + e = V^{2+}(1)$	1
2 (c) (ii)	$V^{2^+} + VO_2^+ + 2H^+ \rightarrow V^{3^+} + VO^{2^+} + H_2O$ Correct vanadium species in both reactants and products (1); equation given balanced correctly (1).	2
2 (d) (i)	$3+$ $\begin{bmatrix} H_2 O_{H_2} & 0H_2 \\ H_2 O_{H_2} & 0H_2 \\ 0H_2 & 0H_2 \end{bmatrix}$ Octahedral arrangement of ligands (1); O in H_2O bonded to V for all ligands (1). Ignore charge on ion.	2
2 (d) (ii)	$\begin{array}{c c} 3d & 4s \\ \hline v & 1 & 1 & 1 \\ \hline v^{3+} & 1 & 1 & 1 \\ \hline Correct arrangement for V (1); \\ correct arrangement for V^{3+} (1). \end{array}$	2
2 (d) (iii)	Ligands cause/interact with d orbital/energy levels AW (1); to split into two groups / $E = hv$ or in words (1); visible light/frequencies absorbed to excite electrons (1); rest of visible light transmitted as colour AW (1).	4
	Total	19

.

2849 Jan 2006

Question		Expected answers	<u> </u>		Marks
3 (a)	2-propylpentanoic acid pentanoic acid (1) 2-propyl (1) allow 2-propan(e Dipropylethanoic/dipropanetl	e) or propyl-2-/; hanoic acid gains 1 n	nark.		2
3 (b)	$H_{3}C - C - C - C + C - C + C + C + C + C + $				1
$\frac{3}{2}$ (c) (i)	Allow if only COO/Doth attack	latile reactants/gases	<u>rciea.</u>		1
	(Fractional) distillation (1)				
3(c)(ii)	Add dilute bydrochloric/sulph	uric/acid (1) NOT c			1
					4
3 (C) (IV)	(Potassium) ethanoate/ CH ₃	,COO⁻(K') _{(1).}			1
3 (d)	C ₂ H ₅ OH (1); Any two from three : relative molar mass = 46 (1); since peak furthest right is di (1); any one use of fragmentation /difference between peaks at	ue to molecular ion(<i>n</i> n pattern e.g. peak a t 29 and 45 = 16, sug	nay be shown on diag t 29, due to ethyl grou gests O present (1).	ram) ıp	3
3 (e)	chemical shift	type of proton	relative		3
	from spectrum		intensity		
	1.0	CH₃	9		
	1.4	CH ₂	8		
ļ	2.2	O=CCH ₃	3		
	3.7	C H ₂OC=O/ _CH₃OC=O	2		
	types of proton correctly ider all four correct gains second correct relative intensities (1)	ntified (1); mark (1);).		τωο	
3 (f)	(Broad) peak around 2500–3 (1); (Strong) peak around 1700– (1).	3200 cm ⁻¹ (1) indicate 1725 cm ⁻¹ (1) indicate	s OH (in carboxylic a es C=O (in carboxylic	cid) acid)	4
3 (g)	Any two of the following poir Solids are easier to administ taste/smell reduced; not acidic; not corrosive; easier to make sure correct of more soluble in water (1 mark for each point).	nts: er; dosage,			2
	,			Total	19
Question		Expected answers	5	L	Marks
4 (a) (i)	Stereoisomerism/optical (iso	merism) (1).			1

2849 Jan 2006

4 (a) (ii)	(Molecule has) an asymmetric carbon atom / chiral centre / carbon bonded to four different atoms/groups / mirror image is non-superimposable (1);		
	H_2N H_2N H H_2N H		
	Correct 3D structural formula for one enantiomer(1); mirror image (1).		
4 (b) (i)	850 ± 25 (1) years for 1st reading; 850 ± 25 years for 2nd reading and 3rd reading not greater than 925 (1) <i>units need to be present for at least one of the readings to gain both marks;</i> suitable construction on graph to show calculation of half-life (1).	3	
4 (b) (ii)	Half-life is constant (1).	1	
4 (b) (iii)	Rate = $k \ge [L-aspartic acid];$ [L-aspartic acid] (1); Rate = k (1).	2	
4 (b) (iv)	s ⁻¹ /yr ⁻¹ /time ⁻¹ (1).	1	
4 (b) (v)	k is the rate of reaction (1).		
4 (c)	Zwitterion (1).	1	
4 (d) (i)	$K_{\rm c} = \frac{[\text{ion F}] \cdot [\text{H}^{+}]}{[\text{ion E}]}$	1	
4 (d) (ii)	$[H^{+}]^{2} = 1.38 \times 10^{-4} \times 0.50 (1);$ $[H^{+}] = 8.30 \text{ or } 8.31 \times 10^{-3} \text{ mol dm}^{-3} (1);$ 2 or 3 sig. figs (1).	3	
4 (e)	Order/sequence of amino acids (in protein chain) (1); shape taken up by protein chain e.g. folding of chains AW (1);	7	
	the (extra) COOH/COO ⁻ in aspartic acid (1); forms/increases the hydrogen bonding/ ion- dipole forces/interactions with water (molecules) (1);		
	charged groups on side/R groups of substrates (may give example $-NH_3^+$ / COO ⁻ groups) (1);		
	can attract charged groups/(may give example -NH ₃ ⁻ / COO ⁻ groups) in the active sites/AW of enzymes (1). <i>Accept polar side chains for charged groups but 1 mark not 2.</i>		
	QWC See next page (1).		
	Total	24	

,

Question	Expected answers	Marks
5 (a)	Any answer relating to railway tracks, points, frogs etc.(1).	1
5 (b) (i)	To remove sulphur (1).	1
5 (b) (ii)	Blowing oxygen through (1); turns the carbon to carbon dioxide <i>accept</i> carbon monoxide (1).	2
5 (c) (i)	Acidic (oxide) (1).	1
5 (c) (ii)	$6CaO + P_4O_{10} \rightarrow 2Ca_3(PO_4)_2$	3
	correct formula for $P_4O_{10}/P_2O_5(1)$; correct formula for CaO rest correct (1).	
5 (c) (iii)	Correct amount of P added later AW (1).	1
5 (d)	To remove (dissolved) oxygen (1).	1
5 (e)	Analysing mixtures of steels/ sorting out different steels/ removing non steel materials/rust from the scrap/cleaning steel/contains unwanted elements (1).	1
	Total	11

0006 nat. 1006

Guidelines for the Award of S(P)AG QWC marks in Salters paper 2849 Jan 2006

1 The QWC mark is graded at 'E/U', and it is therefore expected that the majority of candidates will be awarded this mark.

- 2 Award the mark if there is only one error in spelling, (punctuation) or grammar in **any two relevant sentences**. A repeated mis-spelling of the same word would count as one error; a repeated grammatical error (*e.g. no verb*) would count each time.
- 3 Ignore all but the most blatant errors involving commas, because their use varies with individual preference.
- 4 There should be at least two sentences in the answer. These should start with a capital letter but do not penalise lack of full stops at the end.
- 5 Allow bullet points, provided each point is a sentence (or more), *i.e.* not note form. Bullet points need capitals at the start but not full stops at the end.
- **6** Give the benefit of the doubt where unsure; especially avoid penalising obscure grammatical points.