$$
2849 \text { Jan } 2006
$$

Question	Expected answers	Marks
2 (a) (i)	+5 (1) accept 5+.	1
2 (a) (ii)	hydrogen electrode (1); detailed drawing not required but should have H_{2} gas and $\mathrm{H}^{+}(\mathrm{aq})$. a half-cell made from Pt (or C) dipping into a solution $\mathrm{VO}_{2}{ }^{+}$and VO^{2+} ions (1); conditions given as $1 \mathrm{~mol} \mathrm{dm}^{-3} / 1 \mathrm{M}$ concentrations, 1 atmosphere pressure and $298 \mathrm{~K}(1)$; salt bridge dipping in solutions(1); voltmeter correctly connected (1).	5
2 (b) (i)	0.74 V (1).	1
2 (b) (ii)	$\mathrm{B} \mathrm{N}^{2+} / \mathrm{V}^{3+}$ (may give more detail of half-cells) because it has the more negative/less positive electrode potential AW in terms of reducing agent/oxidizing agent or electron transfer (1).	1
2 (c) (i)	$\mathrm{V}^{3+}+\mathrm{e}=\mathrm{V}^{2+}(1)$.	1
2 (c) (ii)	$\mathrm{V}^{2+}+\mathrm{VO}_{2}^{+}+2 \mathrm{H}^{+} \rightarrow \mathrm{V}^{3+}+\mathrm{VO}^{2+}+\mathrm{H}_{2} \mathrm{O}$ Correct vanadium species in both reactants and products (1); equation given balanced correctly (1).	2
2 (d) (i)	 Octahedral arrangement of ligands (1); O in $\mathrm{H}_{2} \mathrm{O}$ bonded to V for all ligands (1). Ignore charge on ion.	2
2 (d) (ii)	Correct arrangement for $V(1)$; correct arrangement for V^{3+} (1).	2
2 (d) (iii)	Ligands cause/interact with d orbital/energy levels AW (1); to split into two groups $/ E=h v$ or in words (1); visible light/frequencies absorbed to excite electrons (1); rest of visible light transmitted as colour AW (1).	4
	Total	19

4 (a) (ii)	(Molecule has) an asymmetric carbon atom / chiral centre / carbon bonded to four different atoms/groups / mirror image is non-superimposable (1); Correct 3D structural formula for one enantiomer(1); mirror image (1).	3
4 (b) (i)	850 ± 25 (1) years for 1st reading; 850 ± 25 years for 2 nd reading and 3rd reading not greater than 925 (1) units need to be present for at least one of the readings to gain both marks; suitable construction on graph to show calculation of half-life (1).	3
4 (b) (ii)	Half-life is constant (1).	1
4 (b) (iii)	Rate $=k \times$ [L-aspartic acid]; [L-aspartic acid] (1); Rate $=k(1)$.	2
4 (b) (iv)	$\mathrm{s}^{-1} / \mathrm{yr}^{-1} / \mathrm{time}^{-1}(1)$.	1
4 (b) (v)	k is the rate of reaction (1).	1
4 (c)	Zwitterion (1).	1
4 (d) (i)	$K_{\mathrm{c}}=\frac{[\text { ion } \mathrm{F}] \cdot\left[\mathrm{H}^{+}\right]}{[\text {ion } \mathbf{E}]} \text { 'ion' not necessary for mark (1). }$	1
4 (d) (ii)	$\begin{aligned} & {\left[\mathrm{H}^{+}\right]^{2}=1.38 \times 10^{-4} \times 0.50-(1) ;} \\ & {\left[\mathrm{H}^{+}\right]=8.30 \text { or } 8.31 \times 10^{-3} \mathrm{~mol} \mathrm{dm}} \\ & 2 \text { or } 3 \text { sig. figs }(1) \text {. } \end{aligned}$	3
4 (e)	Order/sequence of amino acids (in protein chain) (1); shape taken up by protein chain e.g. folding of chains AW (1); the (extra) $\mathrm{COOH} / \mathrm{COO}^{-}$in aspartic acid (1) ; forms/increases the hydrogen bonding/ion- dipole forces/interactions with water (molecules) (1); charged groups on side/R groups of substrates (may give example $-\mathrm{NH}_{3}{ }^{+}$) COO^{-}groups) (1); can attract charged groups/(may give example $-\mathrm{NH}_{3}{ }^{+} / \mathrm{COO}^{-}$groups) in the active sites/AW of enzymes (1). Accept polar side chains for charged groups but 1 mark not 2. QWC See next page (1).	7
	Total	24

$$
\Rightarrow 849
$$

Jan

$$
2006
$$

Question	Expected answers	Marks
5 (a)	Any answer relating to railway tracks, points, frogs etc.(1).	1
5 (b) (i)	To remove sulphur (1).	1
5 (b) (ii)	Blowing oxygen through (1); turns the carbon to carbon dioxide accept carbon monoxide (1).	2
5 (c) (i)	Acidic (oxide) (1).	1
5 (c) (ii)	$\begin{aligned} & 6 \mathrm{CaO}+\mathrm{P}_{4} \mathrm{O}_{10} \rightarrow 2 \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \\ & \text { correct formula for } \mathrm{P}_{4} \mathrm{O}_{10} / \mathrm{P}_{2} \mathrm{O}_{5}(1) \text {; } \\ & \text { correct formula for } \mathrm{CaO} \\ & \text { rest correct (1). } \\ & \hline \end{aligned}$	3
5 (c) (iii)	Correct amount of P added later AW (1).	1
5 (d)	To remove (dissolved) oxygen (1).	1
5 (e)	Analysing mixtures of steels/ sorting out different steels/ removing non steel materials/rust from the scrap/cleaning steel/contains unwanted elements (1).	1
	Total	11

Guidelines for the Award of S(P)AG QWC marks in Salters paper 2849 Jan 2006

1 The QWC mark is graded at ' E / U ', and it is therefore expected that the majority of candidates will be awarded this mark.

2 Award the mark if there is only one error in spelling, (punctuation) or grammar in any two relevant sentences. A repeated mis-spelling of the same word would count as one error; a repeated grammatical error (e.g. no verb) would count each time.

3 Ignore all but the most blatant errors involving commas, because their use varies with individual preference.

4 There should be at least two sentences in the answer. These should start with a capital letter but do not penalise lack of full stops at the end.

5 Allow bullet points, provided each point is a sentence (or more), i.e. not note form. Bullet points need capitals at the start but not full stops at the end.

6 Give the benefit of the doubt where unsure; especially avoid penalising obscure grammatical points.

